000 | 01367nam a2200133Ia 4500 | ||
---|---|---|---|
008 | 220621s9999||||xx |||||||||||||| ||und|| | ||
020 | _a9783040000000 | ||
245 | 0 | _aEmpowering Materials Processing and Performance from Data and AI | |
546 | _aEnglish[eng] | ||
650 | _aplasticity||machine learning||constitutive modeling||manifold learning||topological data analysis||GENERIC||soft living tissues||hyperelasticity||computational modeling||data-driven mechanics||TDA||Code2Vect||nonlinear regression||effective properties||microstructures||model calibration||sensitivity analysis||elasto-visco-plasticity||Gaussian process||high-throughput experimentation||additive manufacturing||Ti–Mn alloys||spherical indentation||statistical analysis||Gaussian process regression||nanoporous metals||open-pore foams||FE-beam model||data mining||mechanical properties||hardness||principal component analysis||structure–property relationship||microcompression||nanoindentation||analytical model||finite element model||artificial neural networks||model correction||feature engineering||physics based||data driven||laser shock peening||residual stresses||data-driven||multiscale||nonlinear||stochastics||neural networks||n/a | ||
700 | _aChinesta, Francisco||Cueto, ElÃas||Klusemann, Benjamin | ||
856 | _uhttps://mdpi.com/books/pdfview/book/4327 | ||
942 | _cEB | ||
999 |
_c35687 _d35687 |