Evolutionary Computation & Swarm Intelligence


English[eng]


dynamic stream clustering||online clustering||metaheuristics||optimisation||population based algorithms||density based clustering||k-means centroid||concept drift||concept evolution||imbalanced data||screening criteria||DE-MPFSC algorithm||Markov process||entanglement degree||data integration||PSO||robot||manipulator||analysis||kinematic parameters||identification||approximate matching||context-triggered piecewise hashing||edit distance||fuzzy hashing||LZJD||multi-thread programming||sdhash||signatures||similarity detection||ssdeep||maximum k-coverage||redundant representation||normalization||genetic algorithm||hybrid algorithms||memetic algorithms||particle swarm||multi-objective deterministic optimization, derivative-free||global/local optimization||simulation-based design optimization||wireless sensor networks||routing||Swarm Intelligence||Particle Swarm Optimization||Social Network Optimization||compact optimization||discrete optimization||large-scale optimization||one billion variables||evolutionary algorithms||estimation distribution algorithms||algorithmic design||metaheuristic optimisation||evolutionary computation||swarm intelligence||memetic computing||parameter tuning||fitness trend||Wilcoxon rank-sum||Holm–Bonferroni||benchmark suite||data sampling||feature selection||instance weighting||nature-inspired algorithms||meta-heuristic algorithms