Frontiers in Ultra-Precision Machining
English[eng]
9783040000000
fused silica||small-scale damage||magnetorheological removing method||combined repairing process||evolution law||diamond grinding||single crystal silicon||subsurface damage||crystal orientation||spherical shell||thin-walled part||wall-thickness||benchmark coincidence||data processing||ultra-precision machining||computer-controlled optical surfacing||dwell time algorithm||removal function||elementary approximation||atmospheric pressure plasma jet||continuous phase plate||surface topography||high accuracy and efficiency||polar microstructures||optimization||machining parameters||cutting strategy||flexible grinding||shear thickening fluid||cluster effect||high-shear low-pressure||aluminum||ion beam sputtering||morphology evolution||molecular dynamics||electrochemical discharge machining (ECDM)||material removal rate (MRR)||electrode wear ratio (EWR)||overcut (OC)||electrical properties||tool material||diamond tool||single-point diamond turning||lubricant||ferrous metal||electrorheological polishing||polishing tool||roughness||integrated electrode||Nano-ZrO2 ceramics||ultra-precision grinding||surface residual material||surface quality||three-dimensional surface roughness||reversal method||eccentricity||piezoelectric actuator||flange||dynamic modeling||surface characterization||cutting forces||tool servo diamond cutting||data-dependent systems||surface topography variation||microstructured surfaces||microlens array||three-dimensional elliptical vibration cutting||piezoelectric hysteresis||Bouc–Wen model||flower pollination algorithm||dynamic switching probability strategy||parameter identification||atom probe tomography (APT)||single-wedge||lift-out||focused ion beam (FIB)||Al/Ni multilayers||vibration-assisted electrochemical machining (ECM)||blisk||narrow channel||high aspect ratio||multi-physics coupling simulation||machining stability||n/a