Amazon cover image
Image from Amazon.com

Statistical physics of DNA : an introduction to melting, unzipping and flexibility of the double helix / Nikos Theodorakopoulos.

By: Material type: TextTextPublication details: London, World Scientific Publishing Co PLtd. 2020.Description: 179ISBN:
  • 9789811209536
Subject(s): DDC classification:
  • 572.8633 THE/S
Summary: "The stability of the DNA double helix is contingent on fine-tuning a number of physicochemical control parameters. Varying any one of them leads to separation of the two strands, in what constitutes a rare physical example of a thermodynamic phase transition in a one-dimensional system. The present book aims at providing a self-contained account of the statistical physics of cooperative processes in DNA, e.g. thermal and mechanical dissociation, force-induced melting, equilibria of hairpin-like secondary structures. In addition, the book presents some fundamental aspects of DNA elasticity, as observed in key experiments, old and new. The latter include some recently published scattering data on apparently soft, short DNA chains and their interpretation in terms of local structural defects (permanent bends, "kinky DNA", after the original Crick-Klug hypothesis). The development of mathematical models used (Kratky-Porod polymer chain, Poland-Scheraga and Peyrard-Bishop-Dauxois models of DNA melting) emphasizes the use of realistic parameters and the relevance of practical numerical methods for comparing with experimental data. Accordingly, a large number of specially produced figures has been included. The presentation is at the level of an advanced undergraduate or introductory graduate course. An extra chapter provides the necessary mathematical background on elasticity of model polymer chains"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books Kerala University of Digital Sciences, Innovation and Technology Knowledge Centre Bioinformatics 572.8633 THE/S (Browse shelf(Opens below)) Available 6897

Includes bibliographical references and index.

"The stability of the DNA double helix is contingent on fine-tuning a number of physicochemical control parameters. Varying any one of them leads to separation of the two strands, in what constitutes a rare physical example of a thermodynamic phase transition in a one-dimensional system. The present book aims at providing a self-contained account of the statistical physics of cooperative processes in DNA, e.g. thermal and mechanical dissociation, force-induced melting, equilibria of hairpin-like secondary structures. In addition, the book presents some fundamental aspects of DNA elasticity, as observed in key experiments, old and new. The latter include some recently published scattering data on apparently soft, short DNA chains and their interpretation in terms of local structural defects (permanent bends, "kinky DNA", after the original Crick-Klug hypothesis). The development of mathematical models used (Kratky-Porod polymer chain, Poland-Scheraga and Peyrard-Bishop-Dauxois models of DNA melting) emphasizes the use of realistic parameters and the relevance of practical numerical methods for comparing with experimental data. Accordingly, a large number of specially produced figures has been included. The presentation is at the level of an advanced undergraduate or introductory graduate course. An extra chapter provides the necessary mathematical background on elasticity of model polymer chains"--

There are no comments on this title.

to post a comment.