Latest Advances in Electrothermal Models
Latest Advances in Electrothermal Models
English[eng]
Dual-Phase-Lag heat transfer model||thermal simulation algorithm||thermal measurements||Finite Difference Method scheme||Grünwald–Letnikov fractional derivative||Krylov subspace-based model order reduction||algorithm efficiency analysis||relative error analysis||algorithm convergence analysis||computational complexity analysis||finite difference method scheme||BJT||modelling||self-heating||silicon carbide||SPICE||IGBT||DC–DC converter||electrothermal model||averaged model||thermal phenomena||diode–transistor switch||power electronics||multi-LED lighting modules||device thermal coupling||compact thermal models||temperature sensors||microprocessor||throughput improvement||inductors||ferromagnetic cores||thermal model||transient thermal impedance||thermal resistance||electrothermal (ET) simulation||finite-element method (FEM)||model-order reduction (MOR)||multicellular power MOSFET||silicon carbide (SiC)
English[eng]
Dual-Phase-Lag heat transfer model||thermal simulation algorithm||thermal measurements||Finite Difference Method scheme||Grünwald–Letnikov fractional derivative||Krylov subspace-based model order reduction||algorithm efficiency analysis||relative error analysis||algorithm convergence analysis||computational complexity analysis||finite difference method scheme||BJT||modelling||self-heating||silicon carbide||SPICE||IGBT||DC–DC converter||electrothermal model||averaged model||thermal phenomena||diode–transistor switch||power electronics||multi-LED lighting modules||device thermal coupling||compact thermal models||temperature sensors||microprocessor||throughput improvement||inductors||ferromagnetic cores||thermal model||transient thermal impedance||thermal resistance||electrothermal (ET) simulation||finite-element method (FEM)||model-order reduction (MOR)||multicellular power MOSFET||silicon carbide (SiC)